Resolução CONAMA 382/2006 para unidades de produção *offshore*

Agenda

✓ Ações de Sustentabilidade

✓ Objetivo

✓ Contextualização do ambiente offshore

✓ Conceito *All Electric*

✓ Resolução CONAMA 382/2006

✓ Avaliação de impacto ambiental

✓ Avaliação de terceira parte

✓ Proposta de ajuste

✓ Conclusão

Anderson Cantarino

Viviana Coelho

Viviana Coelho

Alexandre Takemoto

Alexandre Takemoto

Alexandre Takemoto

Prof. Paulo Artaxo

Alexandre Takemoto

Alexandre Takemoto

O IBP

Com mais de 60 anos de atuação, o IBP - Instituto Brasileiro de Petróleo e Gás, se consolidou como o representante institucional do setor de energia no Brasil

MISSÃO

Promover o progresso do setor de energia, com foco no desenvolvimento de uma indústria de petróleo e gás competitiva e sustentável, gerando benefícios amplamente reconhecidos pela sociedade

VISÃO

Tornar a indústria de petróleo e gás do Brasil referência global em competitividade e sustentabilidade +de200 EMPRESAS ASSOCIADAS

+de1000

MEMBROS

DE COMISSÕES

+de20
PARCEIROS
INSTITUCIONAIS

+de120 ASSOCIADOS INDIVIDUAIS

+de35 COMISSÕES

INTEGRIDADE

visando o contínuo aperfeiçoamento da indústria

LIDERANCA

exercida com fundamentação técnica

VALORES

competitividade em escala global como norteador das proposições

SUSTENTABILIDADE

econômica e socioambiental da cadeia produtiva

COMPROMISSO

com abrangente contribuição à sociedade

Defender a ética,
a transparência
e o irrestrito
compromisso
com o respeito
às leis e aos contratos

Atuar com
dinamismo
e base factual
em temas críticos
para fomentar o
desenvolvimento
da indústria
Não se envolver ou
se posicionar quanto
à questões
comerciais
e político-partidárias

Fomentar um ambiente de negócios aberto que favoreça:

- a competição
- a livre iniciativa
- a inovação
- a segurança jurídica
- a ética concorrencial
- a atração de investimentos
- a diversidade de atores

Promover ações
voltadas à melhoria
nos padrões
de saúde, segurança
e gestão de riscos,
além da redução
continua dos
impactos
ambientais e
climáticos da
indústria

Valorizar a ampla
contribuição da indústria
à sociedade brasileira
por meio da geração de
renda, tecnologia e
empregos, pautada por
uma atuação diversa,
inclusiva, socialmente
responsável e
reconhecida pela
sociedade

Objetivo

Viviana Coelho

Objetivo

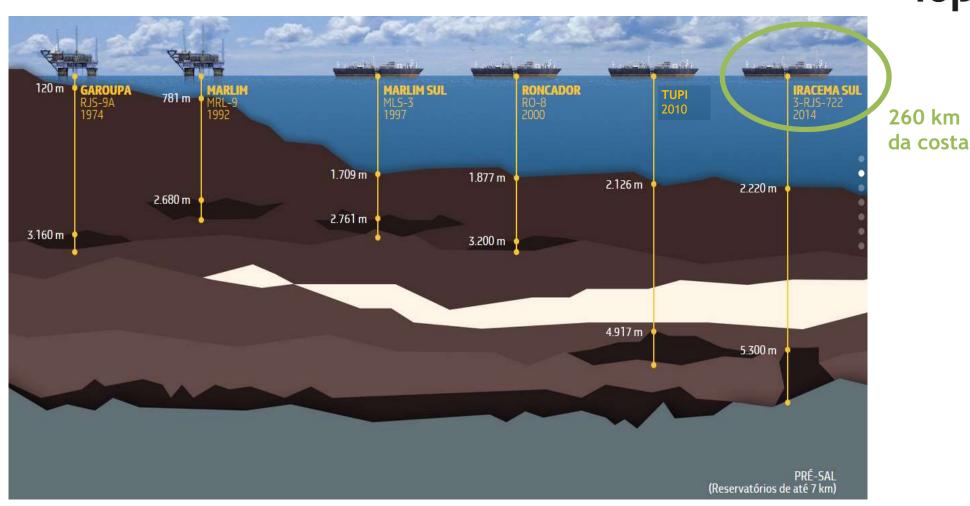
Reduzir as emissões das plataformas de produção de petróleo e gás, através da implantação de uma plataforma totalmente eletrificada → ALL ELECTRIC

Contextualização do ambiente offshore

Viviana Coelho

Ambiente *offshore* é desafiador

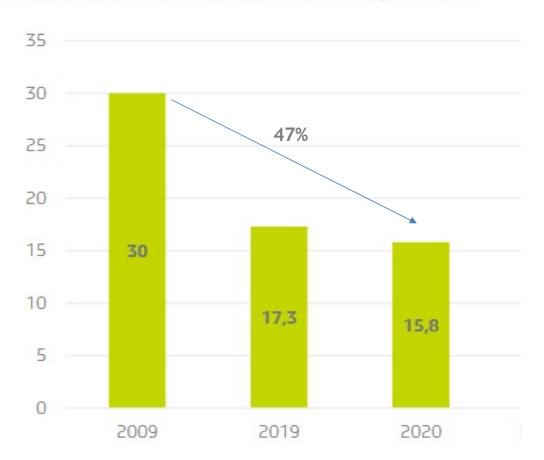
Operações em alto mar em embarcação: requisitos extremos de segurança, limitações de peso e volume


Utilização de gás diretamente do reservatório (gás não especificado, com composição e cargas variáveis)

Necessidade de opção bicombustível para situações de parada ou emergência

Historicamente plantas de menor porte, com geração total abaixo de 100 MW

Pré-sal brasileiro - grandes distâncias e águas ultra profundas



Alta produtividade -> melhor eficiência em emissões

INTENSIDADE DE CARBONO E&P (kgCOze/boe)24

Eficiência > competitividade do petróleo brasileiro

Eletrificação é o estado da arte para melhorar eficiência e reduzir emissões (all electric)

^{*} Ilustração: trajetória de eficiência em carbono do E&P da Petrobras influenciada positivamente pela entrada dos grandes campos do Pré-Sal

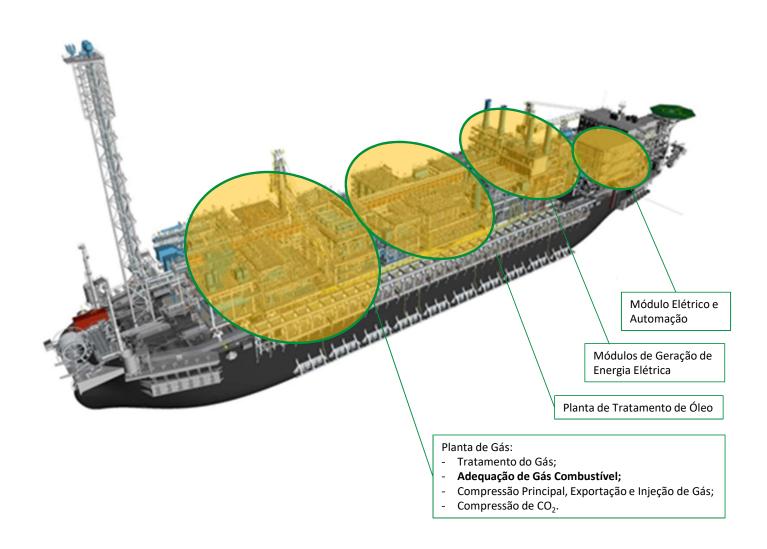
Da urgência

✓ Ciclo longo dos projetos e impossibilidade de incorporação tardia:

Definição hoje → ao mar pós 2027

→ em operação após 2050

✓ Momento de intensa definição de projetos



Conceito all electric

Alexandre Takemoto

Visão geral de uma plataforma (FPSO)

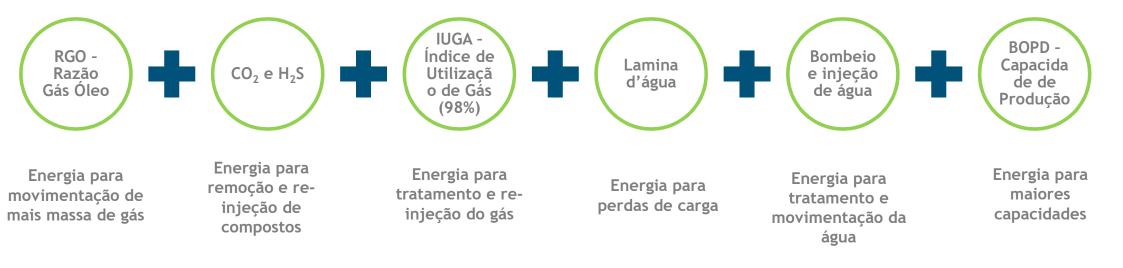
O conceito ALL ELECTRIC

Máximo uso de equipamentos elétricos -> mais eficiência

- Para produzir petróleo e gás, as plataformas necessitam de energia para alimentar seus equipamentos;
- O conceito all electric consiste em eletrificar o maior número possível de equipamentos e aplicações;

- ✓ Podemos gerar toda a energia em um só ponto, de forma mais otimizada, distribuindo a energia elétrica para os equipamentos;
- Essa configuração é mais eficiente do que ter geração de energia descentralizada para os equipamentos;

O conceito ALL ELECTRIC


Menor consumo de combustível -> menor emissão de NOx e gases de efeito estufa

- ✓ A configuração permite utilizar menos combustível, por meio de turbinas mais eficientes, gerando menos emissões, tanto de gases de efeito estufa quanto de outros gases, como o NOx;
- É <u>tendência mundial</u>: Em 2020, a IOGP *Low Carbon Agenda* deu início à discussão sobre eletrificação de FPSOs para reduzir emissões de GEE. Também faz parte do *roadmap* de descarbonização da OGCI (*Oil and Gas Climate Initiative*)

O pré-sal exige produção de energia > 100 MW

MAIOR DEMANDA DE ENERGIA

Resolução CONAMA 382/2006

Alexandre Takemoto

Por que é preciso ajustar a CONAMA 382/2006?

A resolução estabelece os limites máximos de emissão de poluentes atmosféricos para fontes fixas.

ANEXO V: Limites de emissão para poluentes atmosféricos provenientes de turbinas a gás para geração de energia elétrica, **com potência elétrica acima de 100 MW.**

Turbina por tipo de combustível	NOx ⁽¹⁾ como NO ₂	CO ⁽¹⁾	SOx ⁽¹⁾	MP ⁽¹⁾
gás natural	50	65	N.A.	N.A.
combustível líguido	135	N.A.	200	50

Tecnologia não disponível para condições do Pré-sal

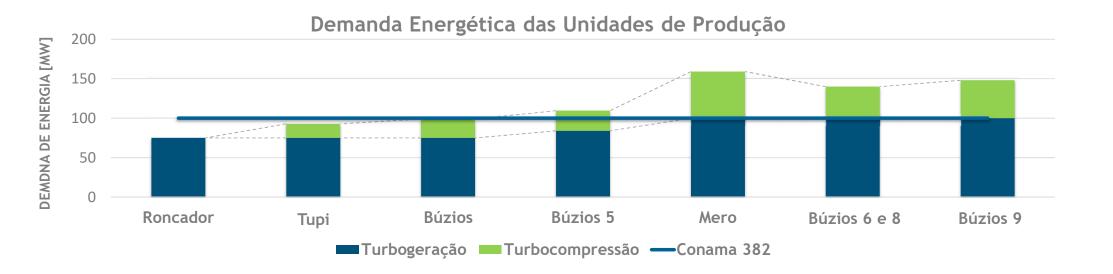
- ✓ O anexo V foi desenvolvido tendo como foco os centros populacionais;
- ✓ A geração de energia elétrica por turbinas a gás, em ambiente terrestre (*onshore*) utiliza gás natural especificado e possui uma demanda pouco variável;
- ✓ As operações do pré-sal ocorrem em ambiente marítimo (offshore), <u>a grande</u> distância da costa, em condições de operação severa, com limitações de espaço e peso, utilizando turbinas bi-combustíveis e gás natural ainda não especificado, com grande variação de demanda, o que impossibilita a aplicação das tecnologias usadas em terra.

Em 2006 não se cogitava plantas offshore > 100MW

Resolução 436/2011

Resolução 382/2006

436/2011	Anexos	382/2006
Não aplicável	Anexo I - geração térmica a óleo combustível	Não aplicável
Não aplicável	Anexo II - queima aberta a gás natural	Aplicável
Não aplicável	Anexo V - geração de EE c/ turbinas a gás natural	Aplicável


01/01/2007

Fonte: Poder Naval OnLine, www.naval.com.br

Como temos feito?

- ✓ Limitamos a geração de energia para atender uma demanda elétrica máxima de 100MW.
- ✓ Para atender a demanda excedente, geramos energia de forma descentralizada, ou seja, utilizamos turbocompressores, que queimam gás natural como fonte de energia.

Limitações das tecnologias para uso offshore

Uso de turbinas aeroderivadas *Dry Low Emission* - DLE (aplicações bicombustível, gás não especificado, composição de gás e cargas variáveis)

Uso de turbinas industriais de grande porte (peso, área e manutenção)

Injeção de água na câmara de combustão (volume e qualidade da água)

Sistemas de abatimento (peso, complexidade, catalisador e amônia - tóxico e inflamável)

Demanda máxima de energia elétrica a 100MW

- ✓ maiores emissões de NO_x e CO₂;
- ✓ geração de energia descentralizada

Avaliação de impactos ambientais

Alexandre Takemoto

Avaliação de impactos ambientais

Avaliar os potenciais ganhos ambientais com a implementação de uma configuração all electric.

Avaliação da intensidade de emissões da geração de energia

Elaboração de Estudos de Dispersão Atmosférica (EDA)

Comparação: arranjo atual versus arranjo all electric

Libra 3 NW (180.000 bopd - 290 km da costa)

cenário atual (caso base)

planta parcialmente eletrificada:

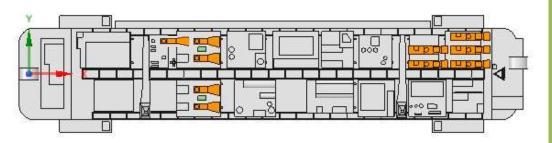
Turbogeradores (TG) gerando até 100 MWe

Turbo Compressores (TC) utilizados para energia excedente

cenário proposto (all electric)

planta 100% eletrificada:

Turbogeradores (TG) gerando toda a energia necessária

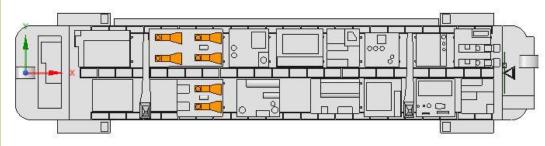


Avaliação comparativa

Libra 3 NW (180.000 bopd - 290 km da costa)

cenário atual (caso base)

4 Turbinas acionando Geradores


(4 x 25 MWe)

3 Turbinas em operação acionando Compressores

(59 MW total)

cenário proposto (all electric)

4 Turbinas acionando Geradores

3 x 42 MWe

1 x 25 MWe

Constatada menor emissão de CO₂ e NOx no *all electric*

Libra 3 NW (180.000 bopd - 290 km da costa)

Libra 3NW		as a Gás eração	Turbo compressor em operação	Produção Real Petróleo	NOx (kg NO ₂ /h)	NOx (kg NO ₂ /	CO ₂ (kg/h)	CO ₂ (kg/ bopd)
Libra 31444	42 MWe	25 MWe	(bopd)		1102/11)	bopd)	_	
Planta parcialmente eletrificada		4	3	180.000	709	0,09	103.961	13,86
Planta 100% eletrificada	3	1	0	181.800*	547	0,07	85.108	11,24

^{*} Este valor apresenta o aumento na efetividade de produção esperado para plataformas 100% eletrificadas.

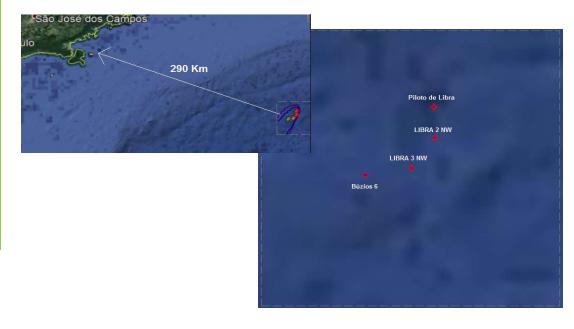
Estudo de Dispersão Atmosférica

Cenários analisados - Bacia de Santos (área do pré-sal)

Exemplo 1

FPSO LIBRA 3 NW

Exemplo 2


Cluster de FPSO:

Piloto de Libra, Libra 2 NW,

Libra 3 NW e Búzios 6

Resultados consolidados - Bacia de Santos

Estudo de Dispersão Atmosférica

Concentrações de NO₂ no limite do domínio (50 km)

	1 hora (µg/m³)	Média anual (μg/m³)
Cenário atual (parcialmente eletrificada)	30	0,5
Cenário proposto (100% eletrificada)	20	0,2

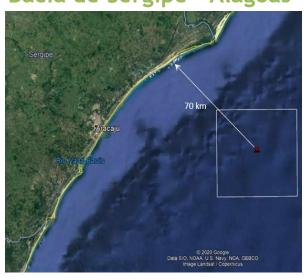
O impacto na qualidade do ar é desprezível na costa.

Demais bacias analisadas

- ✓ Bacia do Pará-Maranhão
- ✓ Bacia de Potiguar
- ✓ Bacia de Sergipe- Alagoas
- ✓ Bacia de Pelotas

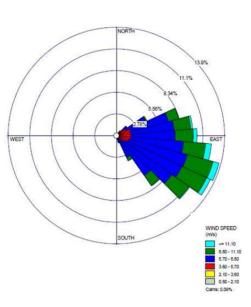
Premissas:

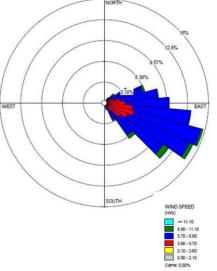
- Plataforma: <u>Libra 3NW (180.000 bpod)</u>
- Dois cenários: configuração parcialmente eletrificada e totalmente eletrificada (all electric)



Fonte: RES/DND/LTE

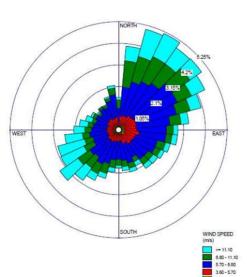

Localização das demais bacias analisadas

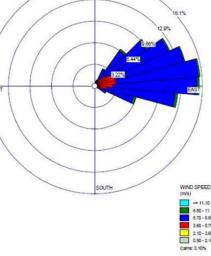



Bacia de Sergipe - Alagoas

Bacia Potiguar

Localização das demais bacias analisadas




Bacia Pará-Maranhão

Bacia de Pelotas

Todas as bacias: impacto na qualidade do ar na costa é desprezível

Concentrações de NO₂ no limite do domínio (50 km)

		1 hora (µg/m³)	Média anual (µg/m³)
Bacia Pará-Maranhão (200 km da costa)	base	25,4	0,54
	proposto	19,7	0,34
Bacia Sergipe-Alagoas (70 km da costa)	base	26,2	0,57
	proposto	20,3	0,34
Bacia Potiguar (30 km da costa)	base	25,1	0,6
	proposto	19,7	0,33
Bacia de Pelotas (185 km da costa)	base	24,9	0,48
	proposto	19,6	0,26

O impacto na qualidade do ar é desprezível na costa

Avaliação de terceira parte

Prof. Paulo Artaxo

Avaliação independente

Parecer do Prof. Paulo Artaxo (USP) sobre a proposta de ajuste da Resolução CONAMA 382/2006:

Após análise cuidadosa e detalhada do documento do CENPES, observamos que a geração de eletricidade nas plataformas de petróleo de até 159 MWe levando a uma emissão de NOx de 547 Kg/h, tem um impacto desprezível na qualidade do ar nas áreas continentais brasileiras.

As análises do documento do CENPES mostram claramente que é necessário uma adequação e explicitação na resolução CONAMA 382/2006 referente a operação de turbinas a gás em plataformas de exploração de petróleo. O documento preconiza que seja explícito no anexo V da resolução CONAMA 382/2006 para que não pairem dúvidas:

"Assim, indicamos a necessidade de inclusão do seguinte item no Anexo V da Resolução CONAMA 382/2006: 3.4. Os limites estabelecidos nesta Resolução não se aplicam a turbinas a gás localizadas além do mar territorial brasileiro."

Todas as análises realizadas mostram que o pleito faz sentido do ponto de vista científico, ambiental e de engenharia, e deve ser recomendado para aprovação pelo CONAMA.

Proposta de ajuste

Alexandre Takemoto

Proposta de ajuste

ibp

Inclusão de um novo item no Anexo V:

Proposta original do pleito:

3.4. Os limites estabelecidos nesta Resolução não se aplicam a turbinas a gás localizadas além do mar territorial brasileiro.

Proposta de ajuste

Inclusão de um novo item no Anexo V:

Proposta alternativa ao pleito:

- 1.2. Para empreendimentos totalmente eletrificados, localizados além do mar territorial brasileiro, quando a geração elétrica por cada turbogerador for inferior a 100 MW, os limites aqui estabelecidos não se aplicam.
- 2.b) Empreendimento totalmente eletrificado: empreendimento que utiliza turbinas em ciclo simples ou combinado somente para geração de energia elétrica.

Conclusão

Alexandre Takemoto

Conclusão

- 1. Ambientalmente desejável pela emissão menor que a configuração atual;
- 2. Contribui para a competitividade do petróleo e gás brasileiro;
- 3. Necessária para viabilizar a incorporação do conceito all electric aos novos projetos do Pré-sal;
- 4. Urgente: vários projetos em definição tecnológica efeito pós 2027;
- 5. Contribui para a competitividade da indústria brasileira.